β2-Glycoprotein I Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis by Suppressing the Phosphorylation of Extracellular Signal-Regulated Kinase 1/2, Akt, and Endothelial Nitric Oxide Synthase
نویسندگان
چکیده
Angiogenesis is the process of new blood vessel formation, and it plays a key role in various physiological and pathological conditions. The β2-glycoprotein I (β2-GPI) is a plasma glycoprotein with multiple biological functions, some of which remain to be elucidated. This study aimed to identify the contribution of 2-GPI on the angiogenesis induced by vascular endothelial growth factor (VEGF), a pro-angiogenic factor that may regulate endothelial remodeling, and its underlying mechanism. Our results revealed that β2-GPI dose-dependently decreased the VEGF-induced increase in endothelial cell proliferation, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the bromodeoxyuridine (BrdU) incorporation assays. Furthermore, incubation with both β2-GPI and deglycosylated β2-GPI inhibited the VEGF-induced tube formation. Our results suggest that the carbohydrate residues of β2-GPI do not participate in the function of anti-angiogenesis. Using in vivo Matrigel plug and angioreactor assays, we show that β2-GPI remarkably inhibited the VEGF-induced angiogenesis at a physiological concentration. Moreover, β2-GPI inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS). In summary, our in vitro and in vivo data reveal for the first time that β2-GPI inhibits the VEGF-induced angiogenesis and highlights the potential for β2-GPI in anti-angiogenic therapy.
منابع مشابه
sMEK1 inhibits endothelial cell proliferation by attenuating VEGFR-2-dependent-Akt/eNOS/HIF-1α signaling pathways.
The suppressor of MEK null (sMEK1) protein possesses pro-apoptotic activities. In the current study, we reveal that sMEK1 functions as a novel anti-angiogenic factor by suppressing vascular endothelial growth factor (VEGF)-induced cell proliferation, migration, and capillary-like tubular structure in vitro. In addition, sMEK1 inhibited the phosphorylation of the signaling components up- and dow...
متن کاملBiologically active fragment of a human tRNA synthetase inhibits fluid shear stress-activated responses of endothelial cells.
Human tryptophanyl-tRNA synthetase (TrpRS) is active in translation and angiogenesis. In particular, an N-terminally truncated fragment, T2-TrpRS, that is closely related to a natural splice variant is a potent antagonist of vascular endothelial growth factor-induced angiogenesis in several in vivo models. In contrast, full-length native TrpRS is inactive in the same models. However, vascular e...
متن کاملVascular endothelial growth factor acts through novel, pregnancy-enhanced receptor signalling pathways to stimulate endothelial nitric oxide synthase activity in uterine artery endothelial cells.
During pregnancy, VEGF (vascular endothelial growth factor) regulates in part endothelial angiogenesis and vasodilation. In the present study we examine the relative roles of VEGFRs (VEGF receptors) and associated signalling pathways mediating the effects of VEGF(165) on eNOS (endothelial nitric oxide synthase) activation. Despite equal expression levels of VEGFR-1 and VEGFR-2 in UAECs (uterine...
متن کاملAdropin is a novel regulator of endothelial function.
BACKGROUND Adropin is a recently identified protein that has been implicated in the maintenance of energy homeostasis and insulin resistance. Because vascular function and insulin sensitivity are closely related, we hypothesized that adropin may also exert direct effects on the endothelium. METHODS AND RESULTS In vitro cell culture models were partnered with an in vivo murine injury model to ...
متن کاملSmall GTP-binding protein Rac is an essential mediator of vascular endothelial growth factor-induced endothelial fenestrations and vascular permeability.
BACKGROUND Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces both angiogenesis and vascular permeability. Although its angiogenic activity has been well characterized, the signaling pathways of VEGF-induced permeability remain poorly understood. METHODS AND RESULTS Using the mouse corneal micropocket assay, Miles assay, and a combination of cytochemical, elect...
متن کامل